000 nab a22 7a 4500
999 _c16021
_d16021
003 PC16021
005 20210625062818.0
008 200702b xxu||||| |||| 00| 0 eng d
040 _cH12O
041 _aeng
100 _92678
_aMarín Buera, Lorena
_eInstituto de Investigación i+12
100 _92679
_aGarcía Bartolomé, Alberto
_eInstituto de Investigación i+12
100 _91013
_aMorán Jiménez, María Josefa
_eInstituto de Investigación i+12
100 _91007
_aArenas Barbero, Joaquín
_eInstituto de Investigación
100 _92680
_aHidalgo, Beatriz
_eBioquímica
100 _92412
_aMartín, Miguel A.
_eInstituto de Investigación i+12
100 _92361
_aUgalde Bilbao, Cristina
_eInstituto de Investigación i+12
100 _92247
_aSánchez Pérez, Ricardo
_eInstituto de Investigación i+12
245 0 0 _aDifferential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency.
_h[artículo]
260 _bJournal of proteomics,
_c2015
300 _a113:38-56.
500 _aFormato Vancouver: Marín-Buera L, García-Bartolomé A, Morán M, López-Bernardo E, Cadenas S, Hidalgo B et al. Differential proteomic profiling unveils new molecular mechanisms associated with mitochondrial complex III deficiency. J Proteomics. 2015 Jan 15;113:38-56.
501 _aPMID: 25239759 PMC4259860
504 _aContiene 64 referencias
520 _aWe have analyzed the cellular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in BCS1L, a major genetic cause of mitochondrial complex III enzyme deficiency. Mutant fibroblasts exhibited low oxygen consumption rates and intracellular ATP levels, indicating that the main altered molecular event probably is a limited respiration-coupled ATP production through the OXPHOS system. Two-dimensional DIGE and MALDI-TOF/TOF mass spectrometry analyses unambiguously identified 39 proteins whose expression was significantly altered in complex III-deficient fibroblasts. Extensive statistical and cluster analyses revealed a protein profile characteristic for the BCS1L mutant fibroblasts that included alterations in energy metabolism, cell signaling and gene expression regulation, cytoskeleton formation and maintenance, and intracellular stress responses. The physiological validation of the predicted functional adaptations of human cultured fibroblasts to complex III deficiency confirmed the up-regulation of glycolytic enzyme activities and the accumulation of branched-chain among other amino acids, suggesting the activation of anaerobic glycolysis and cellular catabolic states, in particular protein catabolism, together with autophagy as adaptive responses to mitochondrial respiratory chain dysfunction and ATP deficiency. Our data point to an overall metabolic and genetic reprogramming that could contribute to explain the clinical manifestations of complex III deficiency in patients.
710 _9625
_aInstituto de Investigación imas12
710 _9317
_aServicio de Bioquímica Clínica
856 _uhttp://europepmc.org/article/MED/25239759
_yAcceso libre
942 _2ddc
_cART
_n0