000 02801na a2200277 4500
999 _c6779
_d6779
003 PC6779
005 20191029100520.0
008 130622s2013 xxx||||| |||| 00| 0 eng d
040 _cH12O
041 _aeng
100 _aBustos Lozano, Gerardo
_91378
_eNeonatología
245 0 0 _aBacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life
_h[artículo]
260 _bPloS one,
_c2013
300 _a8(6):e66986.
500 _aFormato Vancouver: Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One. 2013 Jun 28;8(6):e66986.
501 _aPMID: 23840569
504 _aContiene 47 referencias
520 _aThe establishment and succession of bacterial communities in infants may have a profound impact in their health, but information about the composition of meconium microbiota and its evolution in hospitalized preterm infants is scarce. In this context, the objective of this work was to characterize the microbiota of meconium and fecal samples obtained during the first 3 weeks of life from 14 donors using culture and molecular techniques, including DGGE and the Human Intestinal Tract Chip (HITChip) analysis of 16S rRNA amplicons. Culture techniques offer a quantification of cultivable bacteria and allow further study of the isolate, while molecular techniques provide deeper information on bacterial diversity. Culture and HITChip results were very similar but the former showed lower sensitivity. Inter-individual differences were detected in the microbiota profiles although the meconium microbiota was peculiar and distinct from that of fecal samples. Bacilli and other Firmicutes were the main bacteria groups detected in meconium while Proteobacteria dominated in the fecal samples. Culture technique showed that Staphylococcus predominated in meconium and that Enterococcus, together with Gram-negative bacteria such as Escherichia coli, Escherichia fergusonii, Klebsiella pneumoniae and Serratia marcescens, was more abundant in fecal samples. In addition, HITChip results showed the prevalence of bacteria related to Lactobacillus plantarum and Streptococcus mitis in meconium samples whereas those related to Enterococcus, Escherichia coli, Klebsiella pneumoniae and Yersinia predominated in the 3rd week feces. This study highlights that spontaneously-released meconium of preterm neonates contains a specific microbiota that differs from that of feces obtained after the first week of life. Our findings indicate that the presence of Serratia was strongly associated with a higher degree of immaturity and other hospital-related parameters, including antibiotherapy and mechanical ventilation.
710 _9446
_aServicio de Pediatría-Neonatología
856 _uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695978/pdf/pone.0066986.pdf
_yAcceso libre
942 _n0
_2ddc
_cART